Mitochondrial proliferation in the permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish.
نویسندگان
چکیده
Adjustments in mitochondrial properties and capacities are crucial in acclimatization to seasonal cold and in evolutionary cold adaptation of marine ectotherms. Although long-term compensatory increments in aerobic capacity of fish tissues have frequently been described in response to cold, much less is known about transitional phases and gene expression patterns involved. We investigated the time course of adjustment to acute cold in liver of eurythermal eelpout Zoarces viviparus. Whereas citrate synthase (CS) activity rose progressively in liver, cytochrome c oxidase (COX) activity was not altered during cold acclimation. Species-specific RNA probes were used to determine mRNA levels. CS mRNA (nuclear encoded) displayed a delayed, transient increase in response to cold, such that transcript levels did not parallel the change in enzyme activity. The enzyme activities and mRNA levels in the confamilial Antarctic Pachycara brachycephalum indicate cold compensation of CS activity in this cold-adapted species. The ratio of CS and COX activities was elevated in acclimation and adaptation to cold, indicating enhanced citrate synthesis over respiratory chain capacities in cold-adapted liver mitochondria. This may support enhanced lipid synthesis typically found in cold. The ratio of enzyme activity and transcript levels differed largely between Z. viviparus populations from the Baltic and North Seas, indicating the influence of unidentified parameters other than temperature. Transcript levels may not be tightly correlated with enzyme activities during thermal adaptation and thereafter. The time course of the acclimation process indicates that regulation at the translational and posttranslational levels predominates in adjustment to moderate thermal challenges.
منابع مشابه
Thermal sensitivity of uncoupling protein expression in polar and temperate fish.
Uncoupling proteins (UCP), capable of increasing proton leakage across the inner mitochondrial membrane, may play a role in the temperature-dependent setting of energy turnover in animals (and their mitochondria). Therefore, the genes and expression of fish UCP were investigated in the Antarctic eelpout Pachycara brachycephalum and a temperate confamilial species, the common eelpout Zoarces viv...
متن کاملTemperature-dependent expression of cytochrome- c oxidase in Antarctic and temperate fish.
Seasonal acclimation versus permanent adaptation to low temperatures leads to a differential response in the expression of cytochrome- c oxidase (CCO) in temperate and Antarctic eelpouts. Although eurythermal eelpout from the North Sea ( Zoarces viviparus) displayed a cold-induced rise of CCO activity in white muscle, enzyme activity in the cold stenothermal Antarctic eelpout Pachycara brachyce...
متن کاملHigh-energy turnover at low temperatures: recovery from exhaustive exercise in Antarctic and temperate eelpouts.
Earlier work on Notothenioids led to the hypothesis that a reduced glycolytic capacity is a general adaptation to low temperatures in Antarctic fish. In our study this hypothesis was reinvestigated by comparing changes in the metabolic status of the white musculature in two related zoarcid species, the stenothermal Antarctic eelpout Pachycara brachycephalum and the eurythermal Zoarces viviparus...
متن کاملAntarctic Fish Blood: Respiratory Properties and the Effects of Thermal Acclimation
1. The effects of thermal acclimation on whole blood oxygen affinity were examined in the antarctic fish Pagothenia borchgrevinki. 2. 4-5 °C-acclimated fish had a P50 value of 26-7 mrnHg at pH 8*1, compared to 20-7 mmHg for — l-5°C-acclimated fish. The apparent heat of oxygenation, AH = — 26-7kJmol~, is comparable to values for temperate species. 3. Warm-acclimation was followed by an increased...
متن کاملPhysiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms.
Polar, especially Antarctic, oceans host ectothermic fish and invertebrates characterized by low-to-moderate levels of motor activity; maximum performance is reduced compared with that in warmer habitats. The present review attempts to identify the trade-offs involved in adaptation to cold in the light of progress in the physiology of thermal tolerance. Recent evidence suggests that oxygen limi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 285 6 شماره
صفحات -
تاریخ انتشار 2003